0 00 0 IMPROVED LOCATION WITH CICAL CE

A.C. Chang, D.W. Rivers, J.A. Burnetti Seismic Data Analysis Center Teledyne Geotech 314 Montgomery Street Alexandria Virginia 22314

15 JUL 1981

VSC-TR-81-10

REGIONAL EVENTS

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

FILE COPY

Monitored By: **VELA Seismological Center** 312 Montgomery Street Alexandria, VA 22314

81 10 7

013

Sponsored by The Defense Advenced Research Projects Agency (DARPA) DARPA Order No. 2551

Disclaimer: Neither the Defense Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsible for information contained herein which has been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary. The views and conclusions presented are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency, the Air Force Technical Applications Center, or the US Government.

Unclassifed SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER VSC-TR-81-10 TYPE OF REPORT & PERIOD COVERED Technical / IMPROVED LOCATION WITH REGIONAL EVENTS. PERFORMING ORG. REPORT NUMBER SDAC-TR-81-2 CONTRACT OR GRANT NUMBER(+) Z. AUTHOR(e) A. C. Chang F08606-79-C-0007 2 D. W. Rivers J. A. Burnetti PERFORMING ORGANIZATION NAME AND ADDRESS Teledyne Geotech VT/0709/B/PMP 314 Montgomery Street Alexandria, Virginia 22314 12. REPORT DATE 11. CONTROLLING OFFICE NAME AND ADDRESS Defense Advanced Research Projects Agency December 1980 1400 Wilson Boulevard 13. NUMBER OF PAGES 92 Arlington, Virginia 22209 4. MONITORING AGENCY NAME & ADDRESS(IL different from Controlling Office) 15. SECURITY CLASS. (of this report) VELA Seismological Center Unclassified 312 Montgomery Street 150. DECLASSIFICATION DOWNGRADING Alexandria, Virginia 22314 16. DISTRIBUTION STATEMENT (of thie Report) APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLLAITED. 17. DISTRIBUTION STATEMENT (of the obstrect entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Seismic locations with P, P Successive determination of event locations Simultaneous inversion method 20. ANTRACT (Continue on reverse side if necessary and identify by block number) Three methods of locating events with regional phases were tested and compared for accuracy of hypocenter determination. A modified HYLO method was found to be slightly less accurate than a standard location algorithm using a

Herrin 68 earth model. In addition, we found that the modified HYLO method requires a much more detailed knowledge of the earth's crust and upper mantle than is generally available. Two methods which do not require any previous knowledge of the crust in the area of interest, the methods of successive determinations and simultaneous inversions, were found to reduce location errors

DD 1 JAN 73 1473 EDITION OF 1 NOV 68 IS OBSOLETE

108 258 SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered

	nclass	CATION OF THE	S PAGE(W	han Data Entere	(d)				
about 5 model.	0%, as	compared	to the	standard	location	algorithm	with a	Herrin	68 ea

IMPROVED LOCATION WITH REGIONAL EVENTS

SEISMIC DATA ANALYSIS CENTER REPORT NO.: SDAC-TR-81-2

AFTAC Project Authorization No.: VELA /0709/B/PMP

Project Title: Seismic Data Analysis Center

ARPA Order No.: 2551

Name of Contractor: TELEDYNE GEOTECH

Contract No.: F08606-79-C-0007

Date of Contract: 1 October 1980

Amount of Contract: \$1,493,393

Contract Expiration Date: 30 September 1981

Project Manager: Robert R. Blandford (703) 836-3882

P. O. Box 334, Alexandria, Virginia 22313

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ABSTRACT

Three methods of locating events with regional phases were tested and compared for accuracy of hypocenter determination. A modified HYLO method was found to be slightly less accurate than a standard location algorithm using a Herrin 68 earth model. In addition, we found that the modified HYLO method requires a much more detailed knowledge of the earth's crust and upper mantle than is generally available. Two methods which do not require any previous knowledge of the crust in the area of interest, the methods of successive determinations and simultaneous inversions, were found to reduce location errors about 50%, as compared to the standard location algorithm with a Herrin 68 earth model.

TABLE OF CONTENTS

	Page
ABSTRACT	3
LIST OF FIGURES	5
LIST OF TABLES	6
1. INTRODUCTION	7
2. MODIFIED HYLO METHOD	13
2.1 Theory and Method of Investigation	13
2.2 Results and Discussion	13
3. METHOD OF SUCCESSIVE DETERMINATIONS	16
3.1 Review of P_n and P_g Observations	16
3.2 Theory and Methods of Investigation	16
3.3 Results and Discussion	33
4. METHOD OF SIMULTANEOUS INVERSIONS	46
4.1 Theory	46
4.2 Results	54
4.3 Error Ellipses	64
5. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESI	EARCH 81
ACKNOWLEDGEMENTS	82
REFERENCES	83
APPENDIX I - Least squares fits to Figure 4.	I-1

LIST OF FIGURES

Figure	No.	Title	Page
1		Map of P_n velocities, after Herrin and Taggart (1966).	8
2		Boundaries of regional crustal models of Pakiser and Robinsion (1966).	9
3		Boundaries of local crustal models of Racine (1979).	10
4a-0		Observed travel times for P and P g.	17-31
5a-n		Convergence of calculated epicenters toward true epicenters Method of successive determinations.	- 39-45
6		Raypath for Pg.	49
7a,b		Raypath for P _n .	55,56
8a-n		Error ellipses - Method of simultaneous inversions.	65-78

LIST OF TABLES

Table No.	Title	Page
I	General, regional and local crustal models.	11
II	Comparison of location errors: Herrin 68 versus HYLO.	14
III	Method of successive determination: Absolute errors.	35
IV	Accuracy of location: Successive determinations versus Herrin 68.	36
v	Successive determinations versus HYLO.	37
VI	Double successive determinations.	38
VII	Variables which may be determined using the method of simultaneous inversions.	52
VIII	Comparison of method of simultaneous inversions with method of successive determinations.	57-59
IX	Absolute errors (km) resulting from the application of two location techniques to a common data set.	61
х	Absolute errors (km) resulting from assigning more weight to \boldsymbol{P}_n data in the method of simultaneous inversions.	63
XI	Standard errors - Method of simultaneous inversions.	79

1. INTRODUCTION

The accuracy of location of events located with regional phases (P_n , P^* , P_g , S_n , S^* , S_g) is affected strongly by lateral variations in crustal and upper mantle structures.

Herrin and Taggart (1962) demonstrated that the velocity of the regional phase P varies significantly across the United States. Figure 1 shows their revised map of apparent P velocities across the United States. Herrin and Taggart (1962) introduced a method known as HYLO, which applies corrections to the travel time tables of phase P, based on the velocity model shown in Figure 1. They were able to improve significantly hypocenter and origin time estimates for the nuclear explosion GNOME and the Hebgen Lake earthquake of 18 August 1959. In addition, they were able to eliminate the bias in travel time residuals resulting from the general pattern of faster P_n velocities in the Eastern United States (EUS), as opposed to the Western United States (WUS). Subsequently, Herrin and Taggart (1966) reported similar success in locating the nuclear explosion SALMON. The method, however, has several drawbacks. Only the phase P_n , which, in many regions of the world, is the lowest amplitude phase on the record, may be used. In addition, HYLO makes no correction for variation in crustal thickness between source and receiver, which as Chang and Racine (1979) have shown, may contribute more to travel time residuals than does lateral variation in the phase velocity.

Chang and Racine (1979) relocated twelve nuclear explosions, utilizing data for the phases P_n and P_g . They used Julian's (1974) location program as modified by McCowan (1978) to accept crustal phases P_n , P^* , P_g , S_n , S^* and S_g . They further modified the program to allow an option for selecting up to fifty local crustal models, such that the analyst may utilize an independent model for each epicenter to station path. Figure 2 shows the boundaries of the regional crustal models they used, first published by Pakiser and Robinson (1966). Figure 3 shows the boundaries and codes for fifteen more localized models developed by Racine (1979). In addition, two generalized models, Herrin 68 (1968) and Jeffreys-Bullen (1958) were also used.

Table I is a comparative listing of the general, regional, and localized models. Chang and Racine (1979) were marginally successful in improving the location estimates of the twelve explosions, as compared to a standard location algorithm with a Herrin 68 model.

Figure 1 Map of P_n velocities, after Herrin and Taggart (1966).

Figure 2 Boundaries of regional crustal models of Pakiser and Robinsion (1966).

Figure 3 Boundaries of local crustal models of Racine (1979).

 $\label{eq:TABLE I} \mbox{\sc General, regional and local crustal models.}$

	Model		1st Laye		2nd Lay		Mantle
Area	Des	ignator	Thickness	Velocity	Thickness	Velocity	Velocity
General:							
Jeffrey-Bu	ıllen	J-B	15.00	5.57	18.00	6.50	7.80
Herrin 68		HE	15.00	6.00	25.00	6.75	8.05
Regional:							
Calif. Coa		ccus	15.00	6.20	5.00	7.00	8.10
Sierra Nev		SNUS	25.00	6.20	25.00	7.00	7.90
Pac. NW Co	oast	PCUS	10.00	6.20	25.00	7.00	7.70
Columbia I	Plat.	CAUS	10.00	6.20	35.00	7.00	7.90
Basin & Ra	ange	BRUS	20.00	6.20	10.00	7.00	7.90
Colorado I	Plat.	CPUS	25.00	6.20	15.00	7.00	7.80
Rocky Mtns	5.	RMUS	25.00	6.20	15.00	7.00	8.00
Int. Plair	ns	IPUS	20.00	6.20	30.00	7.00	8.20
Coastal Pi	lain	CLUS	20.00	6.20	15.00	7.00	8.10
App. High:							
& Sup. Up.	land	ASUS	15.00	6.20	25.00	7.00	8.10
Local:							
N. Calif.		NOCA	12.00	5.60	18.00	6.70	8.00
Coast Cali	if.	COCA	10.00	5.60	10.00	6.70	8.00
Sierra Nev	vada	SNCA	15.00	6.00	20.00	6.50	7.60
S. Calif.	1	SOCA	20.00	6.20	10.00	6.90	7.80
N. Nevada	1	NONV	20.00	6.00	10.00	6.70	7.90
Cent. Neva	ada	CENV	20.00	6.00	10.00	6.60	7.80
SW Nevdad	1	SWNV	27.00	6.20	9.00	7.10	7.80
Lake Mead	Nev.	LMNV	15.00	6.00	15.00	6.50	7.90
W. Utah		WEUT	15.00	5.90	10.00	6.40	7.40
E. Utah		EAUT	27.00	6.20	13.00	6.80	7.80
N. Arizona	a	NOAZ	26.00	6.00	12.00	6.80	7.80
Cent. Aria	zona	SOAZ	15.00	6.00	7.00	7.00	7.80
W. Colorad	io	WECO	9.00	6.10	31.00	6.60	7.80
W. New Mex	rico	WENM	19.00	6.20	21.00	6.50	7.90

Their results indicated that several models were needed for each event-station path: a source model for the downgoing ray, a path model to give the average propagation velocity, and a receiver model for the upcoming ray. The original experiment allowed only one model per path. Their results also indicated that the addition of P travel times did not significantly improve location accuracy.

This year, we have experimented with three additional methods of locating events with regional phases. The first, a modified HYLO method, incorporates an option for selecting crustal models at the source and receiver, and assumes a constantly dipping Moho between the two. Two other methods were tested, which require no previous knowledge of crustal structures, and which may incorporate phases other than $\mathbf{P}_{\mathbf{n}}$ into the location process. The method of successive determinations involves alternately calculating a least squares fit to the travel times of the arrivals for a given event, and then relocating the event. Thus, this method determines an independent travel time table for each phase of each individual event. The method of simultaneous inversions does much the same, except that the new travel time relationships and locations are determined simultaneously, through matrix inversion, as opposed to alternately, as in successive determinations.

2. THE MODIFIED HYLO METHOD

2.1 Theory and Method of Investigation

The original HYLO method, of Herrin and Taggart (1962), replaced the travel time relationships for the phase P_n from the standard tables with travel times calculated by determining an average velocity for each travel path, using a P_n velocity which varies laterally as shown in Figure 1.

Our modified HYLO method allowed us to select a local or regional crustal model for the source and receiver crust from among those shown in Figures 2 and 3 and Table I. A constantly dipping Moho was assumed between source and receiver. Figure 1 was divided into a grid of one degree squares, defined by parallels of latitude and meridians of longitude. Each block of the grid has an associated P velocity. A computer program was developed to determine a theoretical travel time for a ray passing down the source model, across the grid of P velocities along the constantly dipping Moho, and up the receiver model. This theoretical time was subtracted from the expected travel time taken from the Herrin 68 table for the same distance, giving us a station correction factor to the Herrin table, which is valid for the given path and crustal models. Since we were using data from nuclear explosions, the true latitude and longitude were known to within one hundredth of a degree, and the true origin times were known to within one hundredth of a second. Therefore, the station correction factors were simply added to the observed P_n travel times, a standard location program was run on the corrected data, utilizing the Herrin 68 travel times, and absolute errors were obtained by comparing the computed locations with the true values. results were compared to those obtained by running the same program on uncorrected data, as reported by Chang and Racine (1979).

2.2 Modified HYLO Method - Results and Discussion

Table II presents the results of our modified HYLO method. The average errors in location and origin time are slightly greater than those obtained by Chang and Racine (1979) for the same events, using uncorrected arrival times for P_n only and both P_n and P_g , and a Herrin 68 earth model.

The poor results of this experiment may be due to a number of reasons. The lateral variation in P_n velocity may be more complicated than is shown in Figure 1. Our assumption of a constantly dipping Moho may have been grossly

TABLE II

Comparison of Location Errors: Herrin 68 Versus Modified HYLO

	HERRIN	HERRIN P only		HERRIN	HERRIN (P + P)				нуго	
	DEPTH REST	EST	DEPTH REST	REST	DEPTH FREE	REE	DEPTH REST	REST	DEPTH FREE	REE
	* TOC E	# OT E	LOC E	OT E	TOC E	OT E	E 200	OT E	10C E	OT E
FAULTLESS	18.3	1.5	15.04	1.3	15.04	1.4	12.32	0.2	12.32	-1.8
RULISON	7.3	0.5	1.58	0.3	1.58	-0.1	3.63	1.3	3.7]	1.0
PASSAIC	N/A	N/A	4.08	-0.4	4.08	-0.4	11.17	0.8	11.17	8.0
ROCKVILLE DAM	5.1	1.5	5.18	1.3	5.18	1.3	5.59	9.0	5.59	-0.4
DORMOUSE	N/A	N/A	60.6	-0.2	60.6	0.2	10.47	8.0-	10.47	-1.4
KLICKITAT	7.0	0.4	6.53	0.0	. 6.53	0.0	9.56	-0.5	6.64	9.0
BANDICOOT	12.9	0.7	1.01	0.8	1.34	9.0	7.09	9.0-	7.09	-1.8
SHOAL	5.9	0	5.18	0.1	5.18	4.1*	11.26	-0.7	11.26	0
MERRIMAC	10.3	0.3	9.58	0.2	9.58	1.0	10.99	-0.2	10.89	4.7
GASBUGGY	5.2	9.0	11.43	7.0	11.43	7.0	5.60	1.1	5.81	0.4
PILEDRIVER	4.0	0.3	12.98	7.0-	12.98	1.2	24.54	-0.4	24.54	6.0
ROANOKE	8.3	0.4	8.15	7.0	8.24	1.5	2.68	9.0-	3.68	7.0
Average	7.8		7.49		7.52		9.68		89.6	
9							3		20.5	

* LOC E: Error of location vector, in km # OT E: Error of origin time estimates T $_{\rm est}$ $^-$ T $_{\rm true},$ in sec.

inaccurate, especially, for example, when a phase crosses two or more distinct geological provinces, as in a path from the Basin and Range to the Rocky Mountains. There is a possibility that our derived local models are not adequate. We find a great deal of variation among authors regarding local crustal models, and our limiting condition that the crust be <u>two layers</u> may have been an important factor. All the above are supported by Schilt et al. (1979) who in a review of the heterogeneity of the crust, with data from vibroseis surveys, carried out by the Consortium for Continental Reflection Profiling, conclude the following:

- 1. That the continental crust demonstrates heterogeneities on a scale of a few kilometers or less, as well as patterns on a continental scale.
- 2. That the Mohorovicic discontinuity has the characteristics of a complexly layered transition zone, as opposed to a continuous interface separating the crust and mantle.

Despite all those possible causes of error, we feel that our revised HYLO method is a better method than the original HYLO, which attempted to compensate only for the portion of the crust above sea level. We find that the HYLO method, as tested in the previous paper, and in this improved version, does not improve location accuracy if only a few stations are available for analysis; in Herrin's publications the number of stations was on the order of 100 and perhaps local fluctuations averaged out so that the removal of overall East-West bias resulted in a more accurate location.

3. METHOD OF SUCCESSIVE DETERMINATIONS

3.1 Review of the P_n and P_g Observations

Thus far, we have shown that the modified HYLO method was not effective in eliminating errors in location due to the earth's heterogeneity. We have discussed several possible explanations of why it did not work. We also discussed the fact that HYLO is difficult to use, especially for smaller regional events, because it utilizes only the phase P_n .

The reason P_g has not been used in the HYLO method is that it has been commonly understood that P_g is not a head wave and that P_g is not linear on the T-delta curve. Thus, it was not considered adequate for use in locating events. If this is so, it may also be possible that the earth is so heterogeneous that P_n travel times fluctuate widely from a linear relationship so that P_n may not be suitable for locating events. We have investigated this point.

Figure 4, a composite travel time curve for eight explosions at NTS, shows that the travel times for both P_n and P_g are linear. Thus, we conclude that both P_n and P_g may be useful for location purposes. Figure 4 also demonstrates that it is possible to get a reasonably good average velocity for phases P_n and P_g , thus explaining Chang and Racine's (1979) reasonably good results in locating the events with the Herrin 68 earth model. Close inspection of Figures 4a through 4n and Appendix I, however, shows that while the travel times for each individual event are linear, the slopes of the linear fits differ for sources distant from each other, and in no case are the velocities exactly equal to the Herrin 68 model. Thus we conclude that we may improve our location estimates, by evaluating P_n and P_g travel time relationships for each event and its unique station distribution. This is a paradox, of course; perhaps the P_n and P_g velocities are characteristic of the detailed source location and depth and not of the "broad-brush" path because a different set of rays (modes) escape the source for different near-source geologies.

This is the basis for our methods of successive determinations and simultaneous inversions. We are not trying to obtain or utilize crustal structures, which we have demonstrated may vary significantly across a small area. We are trying to determine the constant P_n and P_g velocities that best fit each particular event.

Figure 4a Observed P and P Travel Times for FAULTLESS

Figure 4b Observed P_n and P_g Travel Times for RULISON

-19-

Figure 4d Observed P and P Travel Times for ROCKVILLE DAM

Figure 4e Observed P_n and P_g Travel Times for DORMOUSE'

Figure 4f Observed P and P Travel Times for KLICKITAT

Figure 4g Observed P_n and P_g Travel Times for BANDICOOT

Figure 4h Observed P and P Travel Times for SHOAL

Figure 41 Observed P_n and P_g Travel Times for MERRIMAC

Figure 4j Observed P_n and P_g Travel Times for GASBUGGY

Figure 41 Observed P and P Travel Times for ROANOKE

Figure 4m Observed P_n and P_g Travel Times for SALMON

-30-

Figure 40 Observed P and P Travel Times for NTS COMPOSITE

3.2 Theory and Method of Investigation

The method of successive determinations has several advantages over the modified HYLO method. No previous knowledge of the crust is necessary, and it is then applicable anywhere in the world. The method is applicable to any regional phase, whereas HYLO utilizes only the phase P_n . In this experiment, we limited ourselves to the phases P_n and P_g , in order to allow ourselves to compare the results directly with Chang and Racine's (1979) results.

The method of successive determinations utilizes an initial epicenter location which may be determined using any of the standard travel time tables. The location used in this manner will, of course, be only approximately correct, and the size of the absolute error of location will depend on the difference between the P_n and P_g velocities used in the model selected and the true velocities for these phases measured along the particular source to receiver paths used in the location. In this particular study, our original epicenter determination was made using the Herrin 68 travel time tables and a Herrin 68 crustal model. We now make the critical assumption that for each individual event the P_n and P_g velocities have constant values for all paths and hence that the P_n and P_g travel time "curves" are in fact straight lines. Evidence substantiating this assumption has been presented in the previous section.

We shall therefore attempt to correct the approximate locations for the errors in the assumed travel-time relations, but in practice we must, of course, do so without any reference to the true locations, which were known a priori in the construction of Figures 4a-4o. In order to make such a correction, we construct travel-time curves similar to those in Figure 4, but now we plot the observed arrival times versus the distance from the approximate, rather than the true, epicenters. A linear least-squares fit is then performed on these observations, and the slopes of these lines yield corrected values for the Pn and P velocities. Next, the newly determined velocities are used as layer velocities in a crust which is otherwise appropriate to the Herrin travel times, and complete travel times are computed by raytracing. This process continues, alternately determining phase velocities and then travel-times, location and origin time, until the solution converges. Thus, the method determines a new set of travel time relationships for each event.

An option was installed to allow for two separate sets of travel time relationships for each event. This option may be useful, for example, in

allowing the use of separate travel time relationships for paths crossing very dissimilar geological provinces, or for differentiating between stations on opposite sides of a dipping slab.

3.3 Results and Discussion

Table III presents the results of the method of successive determinations. Unlike Chang and Racine's (1979) earlier findings using a standard location program and local or regional crustal models, the addition of P_g arrival times to the data base of the method of successive determinations significantly improves the location accuracy. Thus, it may be that the tabulated travel times for the phase P_g are not applicable to wide areas, and better location accuracy is obtained by determining the travel time relationships for P_g for each individual event. This may be due to the fact that P_g propagates through the upper layer of the crust, which is more laterally heterogeneous in its physical properties than the crust-mantle interface along which the P_g ray propagates. Or it may be possible that a wider variety of P_g rays are emitted as a function of source depth and geology.

Table IV compares the results of successive determinations versus the location and origin time determined using a standard location algorithm and Herrin 68 earth model. Substantial improvement in location is seen using the method of successive determinations.

Table V compares the results of successive determinations versus the modified HYLO method. Successive determination yields a more accurate location, requires no previous knowledge of the velocity structure of the earth's crust, and allows the use of phases other than P_n .

Table VI shows the results of the double successive determination experiment. This experiment invoked the option of separating the detecting stations into two azimuthal sectors and then fitting the travel times for each sector separately. As is shown in the table, dividing the arrival times for GNOME into eastward-going and westward-going paths does reduce the location error somewhat. However, this technique fails in the case of SHOAL, as might be expected since all directions out of SHOAL lie within the Western United States. Note that the P velocity for the second group of stations observing SHOAL defaulted to the Herrin 68 values, when the least-squares fit to the arrival data showed too much variance. Further, for SHOAL the first seven iterations appeared to diverge.

Figures 5a-n show the actual location of each event studied, the initial epicenter determination and the successive locations determined by our program as it converges on a solution. The open circles for SHOAL and GNOME illustrate the successive locations determined by the program allowing two separate travel time relationships. It may be seen that most solutions converged after about seven successive approximations. However, the event ROCKVILLE DAM, which gave a good solution after seven successive approximations, did not converge to a final solution.

TABLE III

Method of Successive Determinations - Absolute Errors

4	# P _n 's	# P 's	Error (km) P _n only Depth Free	Pn & Pg	Error (km) P _n only Depth Rest.	Error (km) P _n & P _g Depth Rest.
FAULTLESS	5	5	18.64	(3.95)	18.64	4.05
RULISON	10	7	restr.	restr.	2.65	3.38
PASSAIC	4	3	(2.66)	restr.	2.66	2.14
ROCKVILLE DA	M 9	8	restr.	restr.	2.04	a 3.75 b 5.00*
DORMOUSE'	3	4	diverges	(9.39)	diverges	10.70
KLICKITAT	13	12	diverges	(3.11)	4.34	4.11
BANDICOOT	5	4	N/A	restr.	N/A	9.50
SHOAL	12	0	diverges	no P	2.34	no P
MERRIMAC	8	0	restr.	no P	5.17	no P
GASBUGGY	12	12	10.51	restr.	10.51	10.02
PILEDRIVER	5	5	diverges	(1.83)	10.41	2.56
ROANOKE	4	4	(4.41)	ignores P **	4.38	4.24
GNOME	18	1	restr.	restr.	7.10	7.06
Mean Error ((km):		8.08	4.57	6.39	а 5.59 ъ 5.71

DIVERGES = Does not converge to solution RESTR = Restricted to 0 depth

Unlike HYLO - can use P_g (bigger than P_n , especially in WUS) Unlike Chang & Racine - P_g improves location.

- * Solution alternates between two epicenters
- ** Residuals too large data rejected

TABLE IV

Accuracy of Location
Successive Determination Versus Herrin 68
Depth Free

		ERRIN 68		SUCCESSI	VE DETERM	INATIONS
	LOC E ¹	OT E ²	DEPTH ³	LOC E	OT E	DEPTH
FAULTLESS	15.04	1.4	0.0	3.96	1.0	3.6
RULISON	1.58	0.0	0.0	3.39	2.6	0.0
PASSAIC	4.08	-0.2	0.0	2.14	-0.6	0.0
ROCKVILLE DAM	5.18	1.5	0.0	a 3.75 b 5.00	1.9 1.9	0.0
DORMOUSE'	9.09	0.2	0.0	9.87	0.7	0.0 4.3
KLICKITAT	6.53	0.1	0.0	2.78	0.7	8.1
BANDICOOT	1.24	0.6	7.8	4.58	0.0	0.0
SHOAL*	5.18	0.0	0.0	2.34	-0.9	0.0
MERRIMAC	9.58	0.3	0.0	5.16	0.2	15.9
GASBUGGY	11.43	0.6	0.0	10.04	2.0	0.0
PILEDRIVER	12.98	0.0	0.0	1.66	-0.1	8.9
ROANOKE	8.24	1.3	7.9	4.20	1.1	28.1
Average	7.52			a 4.49 b 4.59		

- * Depth restricted
- 1. LOC E: Error of location vectors in km
- 2. OT E: Error of origin time estimates, $T_{est} T_{true}$, in sec
- 3. when depth is zero, the depth is restricted to 0 km
- 4. Solution alternates between two epicenters.

TABLE V
Successive Determination Versus HYLO

	HYI	LO	SUCCESSIVE DET	ETERMINATION		
<u> </u>	LOC E	OT E	LOC E	OT E		
FAULTLESS	12.32	-1.8	3.96	1.0		
RULISON	3.72	. 1.0	3.39	2.6		
PASSAIC	11.17	0.8	2.14	-0.6		
ROCKVILLE DAM	5.59	-0.4	a 3.75 b 5.00	1.9 1.9 *		
DORMOUSE'	10.47	-1.4	9.87	0.7		
KLICKITAT	9.64	0.6	2.78	0.7		
BANDICOOT	7.09	-1.8	4.58	0.0		
SHOAL	11.26	0	2.34	-0.9		
MERRIMAC	10.89	4.7	5.16	0.2		
GASBUGGY	5.81	0.4	10.04	2.0		
PILEDRIVER	24.54	0.9	1.66	-0.1		
ROANOKE	3.68	0.4	4.20	1.1		
Average	9.68		a 4.49 b 4.59			

 $[\]star$ Solution alternates between two epicenters.

TABLE VI

Double Successive Determinations

	OME	SHO	DAL
Group #1	Group #2	Group #1	Group #2
LC-NM	PO-TX	EK-NV	ВМО
ML-NM	SS-TX	WI-NV	
RT-NM	SM-TX	MV-CL	CP-CL
SV-AZ	LP-TX	CU-NV	ИВО
SF-AZ	нв-ок	KN-UT	BX-UT
DR-CO	AM-OK	HL~ID	TFO
FS-AZ	то-ок		DR-CO
WM-AZ	SJ-TX		
KN-UT			
PM-WY			
7.887	8.244	8.108	***

SUCCESS							DOUBLE SUCCESS							
 LOC	Error	(km)	OT Error	(sec)	Н	(km)	LOC	Error	(km)	OT	Error	(sec)	Н	(km)
GNOME	7.07		+0.3		0.	0*		5.73			+1.5		4.9	165
SHOAL	2.34		-0.9		0.	0*		1.04(6	liverge	s)	+0.9		0.0)*

* RESTRICTED

*** DEFAULTED to Herrin 68 Model

Figure 5a Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5b Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5c Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5d Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5e Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5f Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5g Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5h Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5i Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5j Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5k Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 51 Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5m Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

Figure 5n Convergence of calculated epicenters toward true epicenters - Method of successive determinations.

4. METHOD OF SIMULTANEOUS INVERSIONS

4.1 Theory

Thus far in this report two approaches have been taken to the problem of overcoming inaccuracies introduced into the location of regional events by an inadequate knowledge of the P_n and P_q travel-time relations. The first approach, HYLO, involved the construction of improved travel-time curves using velocities measured by crustal refraction methods. second approach, the method of successive determinations, assumes no such a priori information (except as an initial guess), but instead determines corrections to the assumed travel-time curves alternately with corrections to the assumed event locations in a successive approximations scheme. We shall now describe a third approach, the method of simultaneous inversions, whereby the corrections to the travel-time curves and to the event locations are computed at the same time rather than alternately. We shall present a detailed comparison of these latter two methods in order to determine which approach ought to be taken in order to improve the location of events at regional distances in the absence of a priori knowledge of the true traveltime relations.

The standard technique for locating seismic events, at both regional and teleseismic distances, involves assuming a trial value of the hypocenter and origin time, calculating predicted arrival times at a set of stations for signals originating at the trial hypocenter, expanding the travel time residual at the i^{th} station, $\delta t_i = t_i$, observed $-t_i$, calculated, in the first-order Taylor series

$$\delta t_i = \left(\frac{\partial t}{\partial T}\right)_i dT + \left(\frac{\partial t}{\partial x}\right)_i dx + \left(\frac{\partial t}{\partial y}\right)_i dy + \left(\frac{\partial t}{\partial h}\right)_i dh, \tag{1}$$

forming a system of such equations for all residuals δt_i , solving for the location corrections dT, dx, dy, and dh by means of matrix inversion and then adding these corrections to the assumed values of the event's origin time, east, north, and depth coordinates. In order to evaluate the derivatives in this equation, one may set

$$\frac{\partial t}{\partial T} = 1 \tag{2}$$

$$\frac{\partial t}{\partial x} = \frac{\partial t}{\partial \Delta} \cdot \frac{\partial \Delta}{\partial x} = -\sin \zeta_0 \cdot \frac{\partial t}{\partial \Delta}$$
 (3)

$$\frac{\partial t}{\partial y} = \frac{\partial t}{\partial \Delta} \cdot \frac{\partial \Delta}{\partial y} = -\cos \zeta_0 \cdot \frac{\partial t}{\partial \Delta}$$
 (4)

where ζ_0 is the azimuth from the epicenter to the station. If the traveltime relations are accurately known, then the derivatives $\frac{\partial t}{\partial \Delta}$ and $\frac{\partial t}{\partial h}$ may be calcuated at the distance Δ_i and the matrix inversion thereby made tractable. Evidence has been presented in Figure 4 and Table III that the travel-time curves for P_n and P_g are linear, and we shall therefore assume that the travel times may be defined analytically as

$$t_{p_n} = T + a_{p_n}(h) + b_{p_n} \cdot \Delta$$
 (5)

$$t_{p_g} = T + a_{p_g}(h) + b_{p_g} \cdot \Delta. \tag{6}$$

In these expressions we have made it explicit that the coefficients a_{P_n} and a_{P_g} depend on the depth of the event, since they represent the delay between the event origin time and the first motion at the surface. The travel-time residuals at regional distances may thus be expanded as

$$(\delta t_{P_n})_i = (\partial t_{P_n}/\partial T)_i dT + (\partial t_{P_n}/\partial x)_i dx + (\partial t_{P_n}/\partial y)_i dy$$

$$+ (\partial t_{P_n}/\partial a_{P_n})_i da_{P_n} + (\partial t_{P_n}/\partial b_{P_n})_i db_{P_n}$$

$$(7)$$

$$(\delta t_{P_g})_i = (\partial t_{P_g}/\partial T)_i dT + (\partial t_{P_g}/\partial x)_i dx + (\partial t_{P_g}/\partial y)_i dy$$

$$+ (\partial t_{P_g}/\partial a_{P_g})_i da_{P_g} + (\partial t_{P_g}/\partial b_{P_g})_i db_{P_g}.$$

$$(8)$$

These expressions are not explicitly a function of depth, since the depth dependence is contained within the coefficients a_p and a_p . Evaluation of the derivatives in these expressions is straightforward:

$$\partial t_{P_n} / \partial T = \partial t_{P_g} / \partial T = \partial t_{P_n} / \partial a_{P_n} = \partial t_{P_g} / \partial a_{P_g} = 1$$
 (9)

$$\partial t_{P_n} / \partial x = -\sin \zeta_0 \cdot (\partial t_{P_n} / \partial \Delta) = -\sin \zeta_0 \cdot b_{P_n}$$
 (10)

$$\frac{\partial t_{p_g}}{\partial x} = -\sin \zeta_0 \cdot b_{p_g} \tag{11}$$

$$\partial t_{P_n} / \partial y = -\cos \zeta_0 \cdot (\partial t_{P_n} / \partial \Delta) = -\cos \zeta_0 \cdot b_{P_n}$$
 (12)

$$\partial t_{\mathbf{p}_{\mathbf{g}}} / \partial y = -\cos \zeta_{\mathbf{0}} \cdot b_{\mathbf{p}_{\mathbf{g}}}$$
 (13)

$$(\partial t_{\mathbf{P}_{\mathbf{n}}} / \partial b_{\mathbf{P}_{\mathbf{n}}}) = \Delta_{\mathbf{i}}$$
 (14)

$$\left(\partial t_{\mathbf{p}_{\mathbf{g}}}/\partial b_{\mathbf{p}_{\mathbf{g}}}\right)_{\mathbf{i}} = \Delta_{\mathbf{i}}.$$
 (15)

The addition of the travel-time residuals $\delta\,t_P$ and $\delta\,_P$ to the conventionally calculated residuals $\delta\,t_P$ teleseismic enables the event location to be expressed in terms of an expanded set of coordinates $(x,y,h,T,a_{P_n},b_{P_n},a_{P_g},b_{Pg})$. For an over-determined system of more than eight observations, the matrix inversion may be carried out as before and a solution, in the least-squares sense, may be found for the newly defined eight-dimensional hypocenter. The first four coordinates give the event location, and the last four determine the slopes and intercepts of the P_n and P_g travel-time curves. If there are no observations of teleseismic P, then the system of equations does not involve h explicitly and so the depth cannot be determined, but the other seven hypocentral coordinates still can be. Similarly the absence of P_n or P_g arrival time data presents no difficulties in the computation since the matrix manipulation is simply carried out in a six-dimensional subspace by restraining the unmeasured coefficients a_{P_n} and b_{P_n} or a_{P_g} and b_{P_g} to have some arbitrary fixed value.

In the event that no teleseismic P arrival times are available and that all of the regional data consist of measurements made upon a single phase only (i.e., all P_n or all P_g), then the origin time as well as the depth of the event becomes indeterminate. That this is so can be seen by examining equations (5) and (6), wherein it is shown that in the absence of P_g measurements one may calculate only the sum of T and a_{P_n} rather than the two individual coefficients, with a similar indeterminacy occurring in the case of no P_n data.

A consideration of the physical meaning of the coefficients a_p , b_p , a_p , and b_p permits the depth to be estimated when it cannot be directly calculated on account of the absence of teleseismic data. Consider a simple earth model consisting of an upper crustal layer of thickness h_1 and P-wave velocity, V_1 , a lower crustal layer of thickness h_2 and velocity V_2 , and a mantle with velocity V_3 . The ray diagram in Figure 6 shows that

$$t_{P_g} = h/2V_1 + \Delta/V_1,$$
 (16)

so we may set

Theoretical Travel Time for $P_{\boldsymbol{Q}}$ in a Simple Earth Model

$$t_{Pg} = S/V$$

$$= (h^2 + \Delta^2)^{\frac{1}{2}}/V_1$$

$$\approx \Delta/V_1 + h/2V_1$$

Figure 6 Raypath for Pg.

$$a_{p_g} = h/2V_1 \tag{17}$$

$$b_{p_g} = 1/V_1.$$
 (18)

In a like manner we find that for an event occurring in the upper crustal layer (cf. Figure 7a)

$$a_{P_n} = \frac{2h_1}{v_1} \cos \theta_1 + \frac{2h_2}{v_2} \cos \theta_2 - \frac{(2h_1 \tan \theta_1 + 2h_2 \tan \theta_2)}{v_3} + \frac{(\tan \theta_1}{v_3} - \frac{1}{v_1} \cos \theta_1) \cdot h$$
(19)

and for an event occurring in the lower layer (cf. Figure 7b)

$$a_{P_n} = (h_1 + 2h_2)/V_2 \cos \theta_2 + h_1/V_1 \cos \theta_1 - [(h_1 + 2h_2) \tan \theta_2 + h_1 \tan \theta_1]/V_3 + (\tan \theta_2/V_3 - 1/V_2 \cos \theta_2) \cdot h$$
(20)

and in both cases

$$b_{p_n} = 1/v_3 \tag{21}$$

where the angles in these expressions are given by Snell's law as

$$\sin \theta_1 = v_1/v_3 \tag{22}$$

$$\sin \theta_2 = v_2/v_3. \tag{23}$$

We shall abbreviate the preceding expressions for a_p and a_p (for both the upper and lower crustal layers) as

$$a_{p_{\alpha}} = k_{1} \cdot h \tag{24}$$

$$a_{p_n} = k_2 \cdot h + k_3 \tag{25}$$

and form the difference

$$a_{p_g} - a_{p_g} = (k_1 - k_2) \cdot h - k_3.$$
 (26)

Substituting into the above formula the values which are found for a_{p} and a_{p} by the method of simultaneous inversions, we may now calculate the depth in terms of the model parameters k_{1} , k_{2} , and k_{3} . We emphasize that such a calculation is only approximate, since the impetus for using the simultaneous inversion approach is the assumption that the a priori earth model is inaccurate. Equations (24) and (25) cannot be used to determine the depth if only P_{n} or P_{g} data are used, since in these cases only $T + a_{p}$ or $T + a_{p}$ can be determined. If, however, the location is constrained to the surface, then these expressions show that the origin time may be approximated by means of relations

$$a_{p} \text{ (measured)} = k_{1} \cdot h + T = T$$
 (27)

$$a_{p_n}$$
 (measured) = $(k_1 - k_2) \cdot h - k_3 + T = -k_3 + T$. (28)

Table VII presents a summary of which variables can be determined when different types of data are used. The indeterminate variables represent a difference between the method of simultaneous inversions and the method of successive determinations. Even though both methods are based upon the determination of the slopes and intercepts of the P_n and P_g travel-time curves and hence they both should be indeterminate under the same circumstances, differences in the operational approaches which were taken to the implementation of the two techniques create discrepancies in their applicability. The simultaneous inversions technique is based directly on equations (5) and (6), which cause the indeterminations shown in Table VII; the implementation of the successive determinations method, however, uses a hybrid approach which calculates the slopes and intercepts in equation (5) and (6) but then ignores the intercepts and substitutes the resulting velocities in a Herrin structure which may be used to calculate $dT/d\Delta$ and dT/dh for regional phases, equations (17) - (23). During each iterative calculation of the hypoconter, the travel-time curves are thus taken to be pre-determined, so the indeterminations shown in Table VII do not occur. In the comparison of results of the two methods which will be presented in the next section, there are therefore several instances of the calculation of some variable by the successive determinations method even though no corresponding value can be calculated by the simultaneous inversions method.

TABLE VII

Variables Which May Be Determined Using the Method of Simultaneous Inversions

Data	Determinate Variables
Pn, Pg, Pteleseismic	$x,y,h,T,a_{p_n}, b_{p_n}, a_{p_g}, b_{p_g}$
P _n , P _{teleseismic}	x,y,h,T,a _P , b _P
P _g , P _{teleseismic}	x,y,h,T,a _p , b _p
Pteleseismic	inapplicable
P _n , P _g	x,y,T,a _p ,b _p ,a _p ,b _p n n g g h (by approximation)
P _n	x,y,b_{p} , $(T + a_{p})$ T (by approximation if depth is restrained)
Pg	x,y,b _p , (T + a _p) g g T (by approximation if depth is restrained)

ror events with epicenters close to each other and at the same depth, the coefficients a_p , b_p , a_p , b_p should be nearly constant from event to event. The accuracy of the determination of these coefficients, and hence of the event location, may therefore be improved by inverting the arrival-time measurements from several nearby events simultaneously, a process known as joint epicenter determination (JED). Applying JED to data from N events has the effect of transforming N systems of equations in 8N unknowns to a single system (with the same total number of equations) in 4N + 4 unknowns. Extension of conventional location to encompass JED is a straightforward technique described by Douglas (1967) and by Ahner, Blandford and Shumway (1971). We shall examine whether this same extension can be performed for the method of simultaneous inversions.

4.2 Results

In order to implement the method, the standard location program LOCATION was rewritten to solve for eight, rather than four, unknowns. The revised program was tested using the same data set as was used for testing the method of successive determinations. (There were a few small changes from the data used in the previous section of this report.) Table VIII presents the results of eight trials which should be examined in comparing the two methods. first trial represents the "correct" results, namely the travel-time curves which are constructed as least-squares fits using the known hypocenter and origin time, as shown in Figure 4. Next are presented the results of applying the method of successive determinations for P data only and for combined P_n and P_g data. These two trials are then repeated with the depth restrained to the surface. The simultaneous inversions results, which follow, ought to be compared with those obtained by the successive determinations techniques run in both the depth-free and depth-restrained modes. The reason for this ambiguity is that even though the method of simultaneous inversions was run in the depthrestrained mode (since no teleseismic data were used), the depth does nevertheless vary indirectly through the coefficients \boldsymbol{a}_{p} and \boldsymbol{a}_{p} , hence the results are perhaps more nearly analogous with those obtained for the depth-free mode of the other technique.

It was not possible in every case to run the successive determinations program successfully in the depth-free mode. The depth would frequently turn out to be negative, in which case it would be restrained to the surface; no results are given for these cases, since they are identical to those which are produced by the running of the program in the depth-restrained mode directly. Some other cases resulted in negative depths which were restrained to the surface at the end of the first iteration, but they yielded positive depths when the improved travel-time curves were applied to them in the second iteration. These once-restrained cases are denoted by parentheses placed around the value of the absolute error.

There are many gaps in the values given in Table VIII for the method of simultaneous inversions which reflect the indeterminations listed in Table VII. As has been discussed previously, the indetermination of the depth can be removed by approximation if one assumes an earth model such as is shown in Figures 6 and 7. We have assumed the following parameters for such a model:

Theoretical Travel Time for Ph in a Simple Earth Model (1) Hypocenter in Upper Crustal Layer

$$X_1 = (h_1-h) \tan \theta_1$$
 $S_1 = X_1/\sin \theta_1$
 $X_2 = h_2 \tan \theta_2$ $S_2 = X_2/\sin \theta_2$
 $X_4 = h_1 \tan \theta_1$ $S_4 = X_4/\sin \theta_1$
 $S_3 = \Delta - X_1 - 2X_2 - X_4$

$$\begin{split} t_{Pn} &= S_1/V_1 + 2S_2/V_2 + S_3/V_3 + S_4/V_1 \\ &= (2h_1 - h)/V_1 \cos\theta_1 + 2h_2/V_2 \cos\theta_2 + \left[\Delta - (2h_1 - h) \tan\theta_1 - 2h_2 \tan\theta_2\right]/V_3 \end{split}$$

Figure 7a Raypath for P_n .

Theoretical Travel Time for Ph in a Simple Earth Model (2) Hypocenter in Lower Crustal Layer

$$X_1 = (h_1 + h_2 - h) \tan \theta_2$$
 $S_1 = X_1/\sin \theta_2$
 $X_3 = h_2 \tan \theta_2$ $S_3 = X_3/\sin \theta_2$
 $X_4 = h_1 \tan \theta_1$ $S_4 = X_4/\sin \theta_1$
 $S_2 = \Delta - X_1 - X_3 - X_4$

$$\begin{aligned} t_{Pn} &= S_1/V_2 + S_2/V_3 + S_3/V_2 + S_4/V_1 \\ &= (h_1 + 2h_2 - h)/V_2 \cos \theta_2 + \left[\Delta - (h_1 + 2h_2 - h) \tan \theta_2 - h_1 \tan \theta_1\right]/V_3 \\ &+ h_1/V_1 \cos \theta_1 \end{aligned}$$

Figure 7b Raypath for P_n.

TABLE VIII

Comparison of Method of Simultaneous Inversions with Method of Successive Determinations

Trial 2: s Trial 3: s Trial 4: s Trial 5: s Trial 6: s	succ succ succ succ	essive essive essive essive ltaneou	determin determin determin determin is invers	ations ations ations ations ions;	el times from times from the property of the p	nly; depo data; de nly; depo data; de	th free epth fr th rest epth re	ee rained straine	d	n
					8					
				Depth	Ab	solute	V _P g	v_{P_n}	r	egrees of
Event Tria	1 #	Lat(N)	Long(W)				(km/sec)) χ^2	Freedom
			11.216		18:15:00.1		5.882	7.719	0.64, 1.6	
	2	.524		7.8		18.64		8.089	1.72	1
	3	.625		3,6		(3.95)	5.967		1.26	6
	4	.524				18.64		8.088		2
	5	.628				4.05		7.922		7
	6	1,33	217			22.35		7.640		4
	7	.468	.212	-4.2	:59.8	18.46	5.834	7.648	1.26	4
	8	.471	.247			18.31				
RULISON	1	39.406	107.949		21:00:00.1		6.111	8.192	2.67, 14.	06 5,8
			restrain	ed]						
	3		restrain							
	4	.421			:01.2	2.65		8.161	1.91	7
	5	.398			:02.7					14
	6	.420				1.78		8.177		6
	7	.412		-7.8	:00.3		6.111		16.44	11
	8	[too fa								
PASSAIC	1	37.120	116.040		18:00:00.2		6.536	7.812	0.04, 0.1	6 1,2
	2	.120	.070	0.9	:59.7	(2.66)		7.910	0.00	0
	3	[depth	restrain	ed]						
	4	.120			:59.6	2.66		7.909	0.00	1
	5	.122	.064		:59.6	2.14	restr.	7.881	1.04	4
	6	.120	.070			2.66		7.907	0.00	0
	7	.120	.071	17.6	:06.0	2.75	6.630	7.909	0.00	1
	8	.133	.039		:00.7	1.45				
ROCKVILLE										
DAM			106.460		16:21:33.6		5.900	8.213	6.27, 6.8	0 6,7
	2		restrain	ed]						
	3			12.9	:37.5	(2.07)	6.129	8.139	16.15	13
		-	restrain	ed]	-					14.7
	5a		.421		:35.5		5.813		19.25	14
	5b	.316			:35.5		5.884		7.99	14
	6	.372	.440			2.59		7.800	2.81	. 5
	7	.336		-31.9	:27.9	4.42	5.808	8.102	8.86	11
	8	[too fa	ir]							

					TABLE VIII	(con't)		V		
				Depth	Ab	soluto	V _{Pg}	$\mathbf{v}_{\mathbf{P}_n}$	D -	
Event Tria	al #	Lat(N)	Long(W)	(km)	0. T. Er	ror (km)	r _g (km/sec)	(km/sec	$\chi^2 \qquad \text{De} \qquad \qquad \chi^2 \qquad \text{F} \qquad \qquad \chi^2 \qquad \text{F} \qquad \qquad \chi^2 \qquad \text{F} \qquad \qquad \chi^2 \qquad \qquad$	reedom
DORMOUSE'	1	37.040	116.020 to conver		18:00:00.1		6.234	7.829	0.39, 0.04	2,1
			LO CONVEL	4.3	.00 0	(0.20)	(12/	7 060	0.10	2
	3				:00.8	(9.39)	6.134	7.909	0.18	3
			to conver	gel	.00 5	10.70	6.119	7 005	0.10	4
	5 6		.900 ficient da	1		10.70	0.119	7.903	0.19	4
	7	.111			:00.4	0 25	6 150	7 005	0.24	1
	8	.077	.994	-0.7		4.72	0.139	1.993	0.24	1
	0	.077	. 224		.00.0	4.72				
KI.ICK ITAT	1	37,151	116,040		15:30:00.1		6.091	7.762	1.26, 14.88	10.11
RELORITING	2		to conver		15.50.00.1		0.071		1110, 11100	10,11
	3			8.1	:00.8	(3.11)	6.108	7.935	6.22	21
	4	.152	.089	0.12		4.34		7.916	3.31	10
	5	.158	.089						8.01	
	6		.031			0.97			15.24	9
	7	.148	.034	2.5	:00.9			7.759	16.55	
	8	.148	.027		:00.2					
BANDICOOT	1	37.040	116.020		18:00:00.0		5.763	8.101	0.17, 0.38	2,3
	2	.077	.012	0.0	:00.3	4.18		8.205	0.25	1
	3	[depth	restraine	d]						
		.077	.012		:00.3			8.205		2
		.079	.014		:00.5		6.115			6
	6	.140	.013			11.14		7.900	0.03	1
	7	.140 .118 .995	.021	-18.9	:58.9	8.67	5.983	8.453	0.32	3
	8	.995	.012		:00.1	5.05				
GUOAT		20.000	110 200		17.00.00 1		1.4.	7 021	12 02	10
SHOAL					17:00:00.1		no data	7.031	12.02	10
	3		to conver	geJ						
	4	.194	.406		•50 2	2.34		7 803	2.92	3
	5		data]		. 39.2	2.34		7.093	2.92	J
	6		.394			1.88		7.835	12.02	8
	7	[no Pg				1.00		,,,,,	12.02	Ü
	8	[too fa	ar]							
MERRIMAC	1	37.055	116 033		16:00:00.1		no data	7.689	2.62	6
II DANKE I BIO	2		restraine		10.00.00.1		no data	,,,,,	2.02	Ū
	3	[no Pg		-,						
	4	.013	.058		:58.6	5.17		7.731	1.10	5
	5	[no P								
	6	.018	.058			5.17		7.731	1.44	5
	7	[no Po	data]							
	8	.012	.059		:58.3	5.31				
GASBUGGY	1	36,678	107.308		19:30:00.1		6.166	8,260	4.90, 13.88	10,10
	2	.635		-0.1		10.51		8.203	2.71	8
	3		restraine							
	4	.635			:02.3	10.51		8.203	2.71	9
	5	.644					5.940			21
	6	.634				10.56		8.208		8
	7	.633	.210	-5.5	:01.9		6.142		5.78	18
	8	too	far]							
					- 58					

TABLE VIII (con't)

					INDLE	ATTI	(2011 1)				
Event Tr	ial	# Lat(N)	Long(W)	Depth	ı 0.	Abs T. Err	olute or (km)	V _P g (km/sec)	V _{Pn} (km/sec) x ²	Degrees of Freedom
PILEDRIV	2	37.227	116.056 to conver		13:30	:00.1		0.128	1.729	0.29, 1.11	1 3,3
	3	.223	.076	8.9		•00 1	(1 83)	6.095	7 7/10	0.67	6
	4	.153	.128	0.9		:59.0		0.033	7.740	0.22	2
	5	.217	.082			:59.3			7.740	1.02	
	6	.165	.118			• 5 9 • 5	8.81	0.093	7.789	0.46	
	7	.190	.100	0.9		:00.6		6.158		1.01	4
	8	.179	.090	0.9		:00.3		0.130	7.704	1.01	
ROANOKE	1	37.123	116.051		15:00	:00.2		5,788	7.494	0.44, 0.29	9 2,2
	2	.160	.033	2.5			(4.41)		7.576	0.02	Ó
	3		Pg on acc				`				
	4	.160	.034		- 1	:58.9	4.38		7.576	0.02	0
	5	.156	.027			:59.0	4.24	5.893	7.557	3.48	5
	6	.156	.033				4.00		7.539	0.00	0
	7	.153	.024	0.9		:59.9	4.11	5.814	7.529	0.18	2
	8	.186	.020			:01.0	7.52				
SALMON	1 2 3		89.570 to conver		16:00	:00.0		no data	8.263	1.61	3
	4 5	.426 [no P	.671			:01.1	33.00		8.138	0.31	2
	6 7 8	30.211 [no Pg [too fa	.246 data]			٠	107.75		8.290	0.18	1
GNOME	1 2 3	[depth	103.865 restraine restraine	d]	19:00	:00.0	1	data pt	7.920	20.80	16
	4	.239	.795			:00.3	7.10		7.983	5.81	15
	5	.238	.796			:00.3		restr.	7.988	5.90	16
	6	.238					7.15		7.993	9.02	14
	7 8	.238 [too	.795	-0.4		:00.5	7.15	6.095	7.993	9.02	13

 $h_1 = 20.0 \text{ km}$ $h_2 = 10.0 \text{ km}$ $V_1 = 6.20 \text{ km/sec}$ $V_2 = 7.00 \text{ km/sec}$ $V_3 = 7.90 \text{ km/sec}$.

Some idea of the validity of this model and hence, of the depth approximation, may be gained by comparing V_1 with the value listed for the velocity of P_g , $V_{P_g} = 1/bp_g$, and by comparing V_3 with $V_{P_n} = 1/bp_n$.

The absolute errors shown in Table VIII are summarized in Table IX. It is apparent that the addition to the data base of P_{ρ} arrival times frequently improves the location relative to that which would be determined using P_n data alone, and it seldom worsens it. This improvement holds for both the method of successive determinations and the method of simultaneous inversions, and it represents an important departure from the results obtained by conventional location techniques (Herrin and Taggart, 1962; McCowan and Needham, 1978; Chang and Racine, 1979). A comparison of the results obtained by the method of successive determinations and by the method of simultaneous inversions shows that even though one or the other of the two methods yields a better location for particular events, on the whole the results are about the same. A notable exception is SALMON, for which the method of successive approximations yielded a poor result and the method of simultaneous inversions failed. This failure is due to the fact that the least-squares solution had only one degree of freedom (cf. Table VIII). The fact that there are discrepancies between the two methods suggests that in practice perhaps both techniques should be used in the location of unknown events; subjective judgment would then be necessary to select one of the two resulting epicenters as "the" location.

Tables VIII and IX also show the results of applying JED to those eight NTS events for which the composite travel-time curves are shown in Figure 40. As one might expect for a technique such as this which effectively performs an average over events, in some cases the location was improved but in other cases it was worsened. The net effect seems to be small. No depths are approximated for the trial using JED since this technique assumes the a_{P_n} and a_{P_n} are the same for all events and hence that each event is at the same depth. The slopes of the calculated travel-time curves imply that V_{P_g} = 6.021 km/sec and V_{P_n} = 7.736 km/sec, values which are to be compared with those given by the least-squares fit (Appendix I) of V_{P_g} = 6.036 km/sec and V_{P_n} = 7.745 km/sec.

TABLE IX

Absolute errors (km) resulting from the application of two location techniques to a common data set.

Successive Determinations

			P _n only	P_n and P_g	P _n only	P_n and P_g
Event	# Pn	# Pg	Depth Free	Depth Free	Depth Restrai	ned Depth Restrained
FAULTLESS	5	5	18.64	(3.95)	18.64	4.05
RULISON	10	7	restr.	restr.	2.65	3.38
PASSAIC	4	3	(2.66)	restr.	2.66	2.14
ROCKVILLE DA	AM 9	8	restr.	restr.	2.04	a 3.75 * b 5.00 *
DORMOUSE'	3	4	diverges	(9.39)	diverges	10.70
KLICKITAT	13	12	diverges	(3.11)	4.34	4.11
BANDICOOT	5	4	4.18	restr.	4.18	4.37
SHOAL	12	0	diverges	no Pg	2.34	no Pg
MERRIMAC	8	0	restr.	no Pg	5.17	no Pg
GASBUGGY	12	12	10.51	restr.	10.51	10.02
PILEDRIVER	5	5	diverges	(1.83)	10.41	2.56
ROANOKE	4	4	(4.41)	ignores Pg	4.38	4.24
SALMON	5	0	diverges	no Pg	33.00	no Pg
GNOME	18	1	restr.	restr.	7.10	7.06

Simultaneous Inversion

Event	P _n only	P_{n} and P_{g}	J.E.D.
FAULTLESS	22.35	18.46	18.31
RULISON	1.78	0.69	
PASSAIC	2.66	2.75	1.45
ROCKVILLE DAM	2.59	4.42	
DORMOUSE'	insuf. P _n	8.25	4.72
KLICKITAT	0.97	0.63	1.18
BANDICOOT	11.14	8.67	5.05
SHOAL	1.88	no Pg	
MERRIMAC	5.17	no Pg	5.31
GASBUGGY	10.56	10.07	
PILEDRIVER	8.81	5.67	6.13
ROANOKE	4.00	4.11	7.52
SALMON	107.75	no Pg	
GNOME	7.15	7.15	

^{*} Solution alternates between two epicenters.

In all versions of the program LOCATION, arrival time residuals for each seismic phase are weighted by the reciprocals of the standard deviations which are anticipated for residuals of that phase. We have heretofore applied weights of $W_{P_n} = 1/\sigma_{P_n} = 1.0$ and $W_{P_g} = 1/3.0$. Table X presents the results of changing these weighting factors in the method of simultaneous inversions. accordance with the observed scatter of data points about the least-squares lines in Figure 40, we have tried alternate values of $W_{P_n} = 1/\sigma_{P_n} = 1/0.84$ and $W_{P_o} = 1/1.58$. It is not the values of these weights but rather their ratio which affects the location, so we anticipate that the locations which will be subject to the most change by these new weighting factors will be those which utilize the most values of P_{n} relative to the number of P_{n} values. Table X shows that only in the case of PILEDRIVER does the change in weights significantly improve the location, and in the case of ROCKVILLE DAM, which was not one of the eight NTS events used to determine the new standard deviations, the new location is significantly worse. The value of JED appears to be enhanced if the new weighting scheme is applied; this improvement is illusory, however, since in fact the locations failed to converge in this case. The values which are shown for the absolute errors are thus unstable, and hence they are sensitive to the locations chosen as a first approximation.

TABLE X $\label{eq:Absolute} \mbox{Absolute errors (km) resulting from assigning more weight to P_n data in the method of simultaneous inversions }$

 $\sigma_{P_n} = 1.0 \quad \sigma_{P_n} = 0.84 \quad \sigma_{P_n} = 1.0 \quad \sigma_{P_n} = 0.84$ $\sigma_{P_g} = 3.0 \quad \sigma_{P_g} = 1.58 \quad \sigma_{P_g} = 3.0 \quad \sigma_{P_g} = 1.58$ J.E.D.² No. Pg Pn and Pg Pn and Pg No. P_n J.E.D. Event 21.05 **FAULTLESS** 5 18.46 18.31 5 13.35 0.83 0.69 RULISON 10 PASSAIC 2.84 2.75 1.45 2.61 8 4.42 ROCKVILLE DAM 8.63 DORMOUSE' 3 4 8.25 9.21 4.72 7.41 KLICKITAT 13 12 0.63 0.32 1.18 1.00 BANDICOOT 5 4 8.67 6.05 5.05 4.25 MERRIMAC 8 0 5.31 3.78 GASBUGGY 12 12 10.07 9.66 PILEDRIVER 5 5 2.48 5.67 6.13 1.03 ROANOKE 4 4.30 7.52 4.11 5.94 **GNOME** 18 1 7.15 7.15

 $^{^{1}}$ 2 P_{g} data points deleted

 $^{^2}$ failed to converge; values represent the minimum found for χ^2

4.3 Error Ellipses

Thus far we have discussed only the absolute error resulting from applying the method of simultaneous inversions to fourteen events whose hypocenters and origin times were known a priori. We now address the question which would be encountered in the location of unknown events, namely the a posteriori estimation of the location error using only the observed data. In the case of conventional location determination used fixed travel-time relations, the procedure for this error estimation is well known (Flinn, 1965). Abbreviating the system of equations upon which the location algorithm is based as

$$\delta_{t} = \mathbf{B} \left(\mathbf{x} - \mathbf{x}_{0} \right), \tag{29}$$

where δ_t is the vector of arrival time residuals, x is the unknown location, and \vec{x}_0 is the trial location, the standard error of the ith component of \vec{x} is given by

$$S_{i} = [(\tilde{g}^{T} \tilde{g})^{-1}]^{1/2}$$
(30)

and the "error ellipsoid" surrounding the computed hypocenter $\dot{\vec{x}}$ is given by

$$(\vec{x} - \hat{\vec{x}})^{T} \vec{E}^{-1} (\vec{x} - \hat{\vec{x}}) \leq N \hat{\sigma}_{0}^{2} F_{N,N-4:0.05}$$
(31)

where N is the number of dimensions of \bar{x} , where \bar{E} is an NxN submatrix of $(\bar{B}^T \ \bar{B})^{-1}$, and where $\hat{\sigma}_0^2$ is the weighted variance of the final residuals. We see that the method of simultaneous inversions presents no new difficulties for the error estimation, since it can operate in eight dimensions as well as in four. In Table XI we present the standard errors corresponding to the absolute location errors already presented. On account of the previously discussed indetermination of the origin time, δa_{pg} is understood to mean the standard error of $(T + a_{pg})$, and similarly for δa_{pg} . The standard errors in the slopes of the travel-time curves b_{pg} and b_{pg} have been used to compute the errors in their reciprocals, the velocities v_{pg} and v_{pg} . By setting the number of dimensions N equal to 2, we may carculate the error ellipses surrounding the computed epicenters; Figures 8a-n show these ellipses along with the actual epicenters.

For those events for which the degrees of freedom (= number of arrival times - number of parameters solved for by inversion) are small, the error ellipses are unrealistically large. This situation can be alleviated by using χ^2 , rather than F, statistics in the computation (Evernden, 1969).

-64-

ELLIPSE IS FOR CHI-SQUARED STATISTIC

Figure 8a - Error Elipses for FAULTLESS

15.729 KM

OUTER ELLIPSE : F-STATISTIC

INNER ELLIPSE . CHI-SQUARED STATISTIC

Figure 8b - Error Ellipses for RULISON

ELLIPSE IS FOR CHI-SQUARED STATISTIC

Figure 8c - Error Ellipses for PASSAIC

OUTER ELLIPSE • F-STATISTIC
INNER ELLIPSE • CHI-SQUARED STATISTIC

Figure 8d - Error Ellipses for ROCKVILLE DAM

OUTER ELLIPSE . F-STATISTIC
INNER ELLIPSE . CHI-SQUARED STATISTIC

Figure 8e - Error Ellipses for DORMOUSE'

OUTER ELLIPSE . F-STATISTIC INNER ELLIPSE . CHI-SQUARED STATISTIC

Figure 8f - Error Ellipses for KLICKITAT

Figure 8g - Error Ellipses for BANDICOOT

OUTER ELLIPSE • F-STATISTIC
INNER ELLIPSE • CHI-SQUARED STATISTIC

Figure 8h - Error Ellipses for SHOAL

Figure 8i - Error Ellipses for MERRIMAC

Figure 8j - Error Ellipses for GASBUGGY

Figure 8k - Error Ellipses for PILEDRIVER

Figure 81 - Error Ellipses for ROANOKE

OUTER ELLIPSE . F-STATISTIC

INNER ELLIPSE . CHI-SQUARED STATISTIC

Figure 8m - Error Ellipses for SALMON

Figure 8n - Error Ellipses for GNOME

TABLE XI
Standard Errors - Method of Simultaneous Inversions

Event	δχ (km)	δy (km)	δ ap _n (sec)	$ \delta b_{P_n} $ (sec/deg)	δapg (sec)	δ bpg (sec/deg	δV _{Pn})(km/sec)	δ V _P g (km/sec)
FAULTLESS	5.36	8.43	1.0	0.198	2.8	0.496	0.104	0.152
RULISON	4.14	3.42	1.1	0.148	3.2	0.457	0.089	0.154
PASSAIC	7.69	7.88	1.6	0.599	5.8	1.864	0.337	0.737
ROCKVILLE								
DAM	5.52	4.54	2.0	0.302	7.4	1.074	0.182	0.326
DORMOUSE'	8.82	17.85	3.0	0.922	4.3	1.519	0.530	0.518
KLICKITAT	4.33	2.89	0.7	0.144	2.1	0.391	0.078	0.130
BANDICOOT	4.39	16.50	3.5	1.161	6.8	2.125	0.746	0.684
SHOAL	4.31	4.04	0.8	0.142			0.078	
MERRIMAC	4.41	4.76	1.1	0.248			0.133	
GASBUGGY	3.50	4.03	1.2	0.167	3.2	0.441	0.101	0.150
PILEDRIVER	4.15	8.49	2.5	0.785	6.8	2.180	0.400	0.663
SALMON	26.54	89.38	8.8	0.223			0.138	
GNOME	2.52	4.03	0.7	0.133			0.076	

If we assume that the a priori assignation of standard deviations for P_g and P_n arrival time measurements are correct (which, as we have shown, they are not), then equation (31) should be replaced by:

$$(\vec{x} - \hat{\vec{x}})^T = (\vec{x} - \hat{\vec{x}}) \le \chi^2_{2:0.05}$$
 (32)

In this equation we have assumed that the weighted standard deviations, σ_i/w_i , are equal to unity. On each error ellipse we show the effect of changing the length of the axes in this way. If the number of degrees of freedom of the solution is small, then $\hat{\sigma}_0^2$ may be an underestimate of the true variance of σ_0^2 , and the right-hand side of equation (31) would be spuriously low. In those cases in which such an underestimate results in a smaller value for the right-hand side of equation (31) than is found for the right-hand side of equation (32), we have ignored the anomalously small F-statistic ellipse and have plotted only the ellipse for the chi-squared statistic.

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

Significant improvements have been made in locating seismic event hypocenters with the successive determinations method and also simultaneous inversions method. We have learned that the earth is typically heterogeneous and that no simple 'model' of an area is adequate for use in each single case. Location experiments of Chang and Racine (1979) showed no improvements in location errors, probably because the regional models they used were not adequate. Experiments with local models resulted in small improvements, but with no significant difference from using one simple (Herrin) model. This is because local models adequate for the source area may not be adequate for the receiver area, and vice versa.

We found that the HYLO method, which uses average P_n velocity through the source to station path, made no significant improvements, possibly because the earth is so heterogeneous that the contour map of P_n velocity which we have used in the experiments is not suitable for each case.

The best result can be obtained by modifying P_g and P_n velocities for each event, whether successively or simultaneously. This means that even for two events a few tens of kilometers apart, P_g and P_n velocities may be significantly different, perhaps due to regional and local heterogeneities and their influence on the characters of the radiated waves.

Note that in these two methods we are not trying to obtain local crustal The residual data from the successive and simultaneous structures by inversions. methods may however contain information regarding the dip of the Moho. Thus, it may be possible to extract crustal models using these methods. In addition, the successive and simultaneous methods should be extended to include more regional phases, including L_{σ} , which is generally the highest amplitude regional phase on the record. The two methods should be merged with the program which utilizes teleseismic data, and used to evaluate location accuracies for various combinations of regional and teleseismic data. Tests should be carried out on data other than from the WUS. The methods should be tested on AI data. Since the methods will utilize the phases P_g and L_g , whose start times are often unclear, an investigation of the precision with which analysts and automatic detectors can pick the onset of the various phases should be evaluated. Finally, the program should be incorporated into the Regional Event Location System (RELS).

ACKNOWLEDGEMENT

Robert Wagner assisted in several stages of the data analysis.

REFERENCES

- Ahner, R. O., R. R. Blandford and R. Shumway (1971). Applications of the joint epicenter determination method, SDL 275, Teledyne Geotech, Alexandria, Virginia.
- Chang, A. and D. P. J. Racine (1979). Evaluation of location accuracy using P_n and P_g arrivals, SDAC-TR-79-4, Teledyne Geotech, Alexandria, Virginia, (in preparation).
- Douglas, A. (1967). Joint epicenter determination, Nature, 215, 47.
- Evernden, J. F. (1969). Precision of epicenters obtained by small numbers of world-wide stations, Bull. Seism. Soc. Am., 59, 1365-1398.
- Flinn, E. A. (1965). Confidence regions and error determinations for seismic event location, Rev. Geophys., 3, 157-185.
- Herrin. E. (1968a). Regional variations of P-wave velocity in the upper mantle beneath North America, <u>The Earth's Crust and Upper Mantle</u>, Pembroke J. Hart, editor.
- Herrin, E. (1968b). Near earthquake P phases, <u>Bull. Seism. Soc. Am.</u>, <u>58</u> 1226-1228.
- Herrin, E. and J. Taggart (1962). Regional variations in P_n velocity and their effect on the location of epicenters, <u>Bull. Seism. Soc. Am.</u>, <u>52</u>, 1037-1045.
- Herrin, E. and J. Taggart (1966). Epicenter determination for the SALMON event, J. Geophys. Res., 71, 3503-3507.
- Julian, B. (1973). Extension of standard event location procedures, Seismic Discrimination SATS, Lincoln Laboratory, MIT, 30 June 1978, 4-9.
- McCowan, D. W., and R. E. Needham (1978). The use of crustal phases in locating explosion epicenters, Seismic Discrimination SATS, Lincoln Laboratory, M.I.T., 9 June 1978, 1-2.
- Pakiser, L. C. and R. Robinson (1966). Composition of the continental crust as estimated from seismic observations, The Earth Beneath the Continents, American Geophysical Union, Geophysical Monograph #10, 620-626.
- Schilt, S., J. Oliver, L. Brown, S. Kaufman, D. Albaugh, J. Brewer, F. Cook, L. Jensen, P. Krumhausl, G. Long, D. Steiner (1979). The heterogeneity of the continental crust: Results from deep crustal seismic reflection profiling using the Vibroseis technique, Rev. Geophys. and Sp. Phys., 17, 354-368.

APPENDIX I

Least-Squares Fit to Figure 4

APPENDIX I

Least-Squares Fit to Figure 4
a: intercept of least-squares line
b: slope of least-squares line (reciprocal of velocity)
JED: 8 NTS events used together in Figure 40.

FAULTLESS Pn		TT-Linear	r Fit	
Station	∇_{\bullet}	TT (sec)	resid (sec)	JED resid
MN-NV	1.528	28.4	0.14	0.62
KN-UT	3.128	50.6	-0.71	-0.15
UBO	5.412	86.1	1.89	2.56
TFO	5.905	90.1	-1.21	-0.51
LC-NM	10.000	150.2	-0.11	0.80
$a_p = 6.249$	sec			
	sec sec/deg → V̄ =	7.719 km/sec		
FAULTLESS P				
Station	Δ°	TT (sec)	resid (sec)	JED resid
MN-NV	1.528	29.1	0.31	0.50
KN-UT	3.128	58.2	-0.83	0.13
UBO	5.412	102.1	-0.11	1.95
TFO	5.905	112.4	0.87	3.17
LC-NM	10.000	188.7	-0.24	4.04
$a_p = -0.100$	sec			
0	sec sec/deg → V =	5.882 km/sec		
RULISON P _n				
Station	Δ°	TT (sec)	resid	
UBO	1.546	29.4	-0.86	
KN-UT	4.519	71.2	0.59	
ALQ	4.612	72.9	1.03	
TFO	5.778	88.2	0.50	
LC-NM	7.074	106.4	1.11	
LAO	7.388	108.6	-0.95	
TUC	7.445	108.6	-1.72	
CR2NB	8.607	125.4	-0.70	
BP-CL	8.679	125.9	-1.17	
вмо	8.823	131.2	2.17	
$a_p = 9.279$ $b_n^n = 13.572$		= 8.192 km/sec		

APPENDIX 1

RULISON P					
Station	Δ°		TT		resid
IIDO	1 5/6		21 2		2.22
UBO	1.546		31.3		
KN-UT	4.519		80.7		-2.47
TFO	5.778		103.4		-2.68
LC-NM	7.074		130.9		1.24
CR2NB	8.607		159.1		1.55
BP-CL	8.679		159.9		1.04
ВМО	8.823		160.6		-0.89
$ap_g = 0.950$ $bp_g = 18.195$	sec sec/deg →	V = 6.11	km/sec		
PASSAIC P _n					
Chahlas	$\Delta^{f o}$		TT	rooid	IED recid
Station	Δ		TT	resid	JED resid
DV-CL	1.274		24.5	0.04	0.37
MN-NV	2.125		36.3	-0.27	-0.05
				•	
KN-UT	2.571		43.2	0.28	0.45
FS-AZ	4.343		68.1	-0.04	-0.09
$a_{P_n} = 6.330$ $b_{P_n} = 14.232$	sec sec/deg →	V = 7.812	km/sec		
PASSAIC Pg					
Station	Δ°		TT	resid	JED resid
MN-NV	2.125		39.7	-0.36	0.10
	2.571		48.1	0.45	0.29
KN-UT					
FS-AZ	4.343		77.7	-0.09	-2.76
$a_{p_g} = 3.913$ $b_{p_g} = 17.011$	sec/deg →	V = 6.536	6 km/sec		
ROCKVILLE DAY	n				
Station	Δ°	TT	resid	Δ^2	TT ²
UBO	2.579	46.0	0.41	6,651	2116.0
KN-UT	5.531	85.7	0.14	30.591	7344.5
		92.7	-0.72	37.356	8593.3
WN-SD	6.112				
RG-SD	6.241	95.2	0.03	38.950	9063.0
TFO	6.380	97.5	0.45	40.704	9506.3
LAO	7.327	109.2	-0.67	53.685	11924.6
CR-NB	7.488	111.9	-0.15	56.070	12521.6
WMO	7.814	115.8	-0.67	61.058	13409.6
KC-MO	9.133	135.5	1.18	83.412	18360.3
no 10 676	20133	20010	2.10	551726	2000010
$a_{P_n} = 10.676$ $b_{P_n} = 13.538$	sec/deg →	V = 8.21	3 km/sec		

APPENDIX I

ROCKVILLE DA	M P g			
Station	Δ٥	TT		resid
KN-UT	5.531	101.3		-1.81
WN-SD	6.112	114.2		0.14
RG-SD	6.241	116.9		0.41
TFO	6.380	117.1		-2.01
LAO	7.327	143.5		6.55
CR-NB	7.488	140.0		0.01
WMO	7.814	145.0		-1.13
KC-MO	9.133	168.8		-2.19
	29 sec	20010		
$a_{pg} = -1.12$ $b_{pg} = 18.84$	6 sec/deg + V	= 5.900 km/sec		
DORMOUSE ' I	n			
Station	Δ°	TT	resid	JED resid
MN-NV	2.188	37.4	-0.13	0.15
KN-UT	2.555	42.9	0.16	0.38
FS-AZ	4.293	67.4	-0.03	-0.07
	sec/deg + V =			
KLICKITAT P	n			
Station	Δ°	TT	resid	JED resid
CU-NV	1.592	28.6	0.09	-0.10
EK-NV	2.071	35.9	0.53	0.33
MN-NV	2.106	36.2	0.32	0.12
KM-CL	2.470	41.3	0.21	0.00
KN-UT	2.572	42.8	0.25	0.03
CP-CL	4.420	68.2	-0.82	-1.10
TFO	4.831	74.8	-0.11	-0.40
BX-UT	5.279	80.2	-1.13	-1.43
UBO	5.968	93.3	2.10	1.78
DR-CO	6.580	97.9	-2.07	-2.40
HL-ID	6.631	99.5	-1.20	-1.54
PI-WY	7.279	110.3	0.32	-0.04
LC-NM	9.095	137.5	1.51	1.09
ap = 5.708	3 sec			
$b_{P_n}^n = 14.32$	8 sec 5 sec/deg + V =	7.762 km/sec		

APPENDIX I

KLICKITAT P				
Station	Δ°	TT	resid	JED resid
CU-NV	1.592	30.5	0.80	0.72
EK-NV	2.071	38.4	-0.04	-0.20
KM-CL	2.470	46.6	0.88	0.65
KN-UT	2.572	47.0	-0.59	-0.83
CP-CL	4.420	79.7	-1.62	-2.17
TFO	4.831	89.7	0.88	0.26
BX-UT	5.279	96.7	-0.30	-1.00
UBO	5.968	110.7	1.12	0.31
DR-CO	6.580	119.7	-1.05	-1.96
HL-ID	6.631	120.7	-0.99	-1.90
PI-WY	7.279	132.9	1.54	0.21
-				
$b_{pg}^{g} = 18.255$	sec/deg →	V = 6.091 km/sec		
BANDICOOT P	n			
Station	Δ°	TT	resid	JED resid
MN-NV	2.188	37.4	-0.29	0.15
KN-UT	2.555	43.0	0.28	0.48
TF-CL	3.704	58.7	0.21	-0.32
FS-AZ	4.293	66.2	-0.38	-1.27
CP-CL	4.311	67.0	0.18	-0.73
$a_{\rm p} = 7.65$	6 sec			
- 11		V = 8.101 km/sec		
BANDICOOT P	g			
Station	Δ°	TT	resid	JED resid
MN-UT	2.188	40.5	-0.04	-0.26
KN-UT	2.55	48.0	0.38	0.48
TF-CL	3.704	68.8	-0.99	0.12
70 47	4.293	81.8	0.65	2.27
$a_{\rm p} = -1.6$	80 sec			
$a_{Pg} = -1.6$ $b_{Pg} = 19.2$	95 sec/deg	\rightarrow V = 5.763 km/se	c	

APPENDIX I

SHOAL P				
Station	Δ^{ullet}		TT	resid
EK-NV	2.074		35.6	0.25
WI-NV	2.261		37.8	-0,21
MV-CL	2.263		37.7	-0.34
CU-NV	2.340		39.3	0.17
KN-UT	4.889		75.2	-0.13
HL-ID	5.420		81.5	-1.37
вмо	5.701	•	87.8	0.95
CP-CL	6.659		100.2	-0.26
UBO	6.881		106.3	2.69
BX-UT	7.215		107.5	-0.85
TFO	7.536		113.0	0.09
DR-CO	8.498		125.6	-0.97
				•••
$a_{\rm p} = 5.90$	06 sec	0.21 1/		
	9 sec/deg → 7.8	b31 km/sec		
MERRIMAC P				
Station	Δ٥	TT	resid	JED resid
MN-NV	2.170	37.2	0.56	0.21
KN-UT	2.565	42.6	0.25	-0.07
FS-AZ	4.309	67.8	0.23	0.10
CP-CL	4.325	66.8	-1.01	-1.13
WI-NV	4.430	68.8	-0.52	-0.64
MV-CL	4.673	72.6	-0.24	-0.33
DR-CO	6.584	100.3	-0.17	-0.06
HL-ID	6.724	103.4	0.90	1.03
$a_{P_n} = 5.26$	ol sec			
$b_{n}^{n} = 14.46$	ol sec/deg + 7.	689 km/sec		
GASBUGGY P				
Station	Δ°		TT	resid
TFO	4.029		65.6	0.30
UBO	4.047		66.1	0.56
LC-NM	4.305		67.4	-1.61
KN-UT	4.440		71.7	0.87
PQ-ID	6.507		98.4	-0.26
WMO	7.359		108.6	-1.52
WZ-NV	7.402		111.9	1.20
WN-SD	8.537		125.4	-0.58
HL2ID	8.768		130.7	1.61
MN-NV	8.786		129.7	0.37
BS-MA	9.124		134.6	0.72
GV-TX	9.285		134.4	-1.65
ap = 11.06				2103
	1 sec/deg + V	= 8.260 km	/sec	
			* (

I-6

GASBUGGY Pg				
Station	Δ° .		TT	resid
TFO	4.029		75.2	-0.77
UBO	4.047		76.1	-0.20
LC-NM	4.305		79.1	-1.85
KN-UT	4.440		86.9	3.51
PQ-ID	6.507		121.2	0.54
WMO	7.359		132.6	-3.42
WZ-NV	7.402		138.4	1.61
WN-SD	8.537		157.4	0.14
HL2ID	8.768		159.6	-1.83
MN-NV	8.786		161.1	-0.65
BS-MA	9.124		170.9	3.06
GV-TX	9.285		170.6	-0.15
$a_P = 3.324$ $b_P g = 18.032$	sec sec/deg → V	= 6.166 km/se	ec	
PILEDRIVER P	n			
Station	Δ°	TT	resid	JED resid
MN-NV	2.049	35.2	-0.10	-0.06
	2.589	43.1	0.03	0.09
KN-UT				
TFO	4.885	75.7	-0.40	-0.27
UBO	5.936	92.1	0.88	1.04
BMO	7.673	115.8	-0.41	-0.20
$a_{P_n} = 5.823$	sec			
	sec/deg → V	= 7.729 km/se	ec	
PILEDRIVER P	g			
	. 0	mm		****
Station	Δ^{ullet}	TT	resid	JED resid
27 24 2				
MN-NV	2.049	37.6	-0.14	-0.60
KN-UT	2.589	47.0	-0.53	-1.15
TFO	4.885	90.6	1.41	0.16
UBO	5.936	108.0	-0.26	-1.80
ВМО	7.673	139.3	-0.48	-2.49
$a_p = 0.558$			• • • • • • • • • • • • • • • • • • • •	
$b_{Pg}^{g} = 18.144$	sec/deg → V	= 6.128 km/se	ec	
ROANOKE P _n				
Station	Δ^{ullet}	TT	resid	JED resid
MN-NV	2.116	36.1	0.04	-0.12
KN-UT	2.580	42.9	-0.04	0.02
FM-UT	3.681	58.9	-0.38	0.12
			0.38	
TF-CL	3.724	60.3	0.30	1.00
$a_{P_{D}} = 4.662$	sec	7 (0)		
$b_{P_{D}}^{"} = 14.838$	sec/deg → V	= /.494 km/s	ec	
		I	-7	

		(Conti	nued)	
ROANOKE Pg				
Station	Δ°	TT	resid	JED resid
MN-NV	2.116	40.7	0.77	1.27
KN-UT	2.580	47.8	-1.05	-0.18
FM-UT	3.681	69.1	-0.90	0.84
TF-CL	3.724	72.0	1.18	2.95
			1.10	2.73
$a_{pg} = -0.720$ $b_{pg} = 19.212$	sec deg → 5.7	88 km/sec		
SALMON P _n				
Station	Δ°	TT		resid
EU-AL	2.178	36.5		-0.29
JE-LA	2.185	37.4		0.52
CPO	5.560	82.4		0.11
GV-TX	6.544	94.6		-0.94
WMO	8.377	120.8		0.60
$aP_n = 7.482$ $bP_n = 13.456$	sec		. 1	
GNOME P _n				
n				
Station	Δ°	TT		resid
LC-NM	2.319	40.6		0.70
PO-TX	2.429	42.1		0.65
SS-TX	2.594	43.8		0.03
SM-TX	4.177	65.6		-0.39
ML-NM	4.339	68.2		-0.06
RT-NM	4.474	70.2		0.04
LP-TX	4.738	73.0		-0.87
SV-AZ	4.820	75.5		0.48
нв-ок	5.049	78.1		-0.13
AM-OK	5.698	85.7		-1.64
SF-AZ	5.972	91.5		0.31
DR-CO	6.112	94.6		1.45
то-ок	6.456	95.6		-2.38
SJ-TX	6.685	99.7		-1.50
FS-AZ	6.808	103.7		0.77
MW-AZ	7.625	116.6		2.20
KN-UT	8.777	131.2		0.63
PM-WY	9.007	133.5		-0.30
$a_{P_n} = 7.348$ $b_{P_n} 14.039$ se				
GNOME P				
Station	۵۰	TT		

44.0 I-8

LC-NM

2.319

APPENDIX I

(Continued)

JED: FAULTLESS, PASSAIC, DORMOUSE PRIME, KLICKITAT, BANDICOOT, MERRIMAC, PILEDRIVER, and ROANOKE combined

 P_n (47 data points) $a_P = 5.842 \text{ sec}$ $b_{P_n} = 14.356 \text{ sec/deg} \rightarrow V = 7.745 \text{ km/sec}$ $\sigma_{P_n} = 0.835 \text{ sec}$ P_g (37 data points) $a_P = 0.455 \text{ sec}$ $b_{P_g} = 18.420 \text{ sec/deg} \rightarrow V = 6.036 \text{ km/sec}$ $\sigma_{P_g} = 1.575 \text{ sec}$